New completely regular q-ary codes based on Kronecker products

نویسندگان

  • Josep Rifà
  • Victor Zinoviev
چکیده

For any integer ρ ≥ 1 and for any prime power q, the explicit construction of a infinite family of completely regular (and completely transitive) q-ary codes with d = 3 and with covering radius ρ is given. The intersection array is also computed. Under the same conditions, the explicit construction of an infinite family of q-ary uniformly packed codes (in the wide sense) with covering radius ρ, which are not completely regular, is also given. In both constructions the Kronecker product is the basic tool that has been used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of new completely regular q-ary codes from perfect q-ary codes

In this paper from q-ary perfect codes a new completely regular q-ary codes are constructed. In particular two new ternary completely regular codes are obtained from the ternary Golay [11,6,5] code and new families of q-ary completely regular codes are obtained from q-ary 1-perfect codes.

متن کامل

On new completely regular q-ary codes

In this paper from q-ary perfect codes new completely regular q-ary codes are constructed. In particular, two new ternary completely regular codes are obtained from ternary Golay [11, 6, 5] code. The first [11, 5, 6] code with covering radius ρ = 4 coincides with the dual Golay code and its intersection array is (22, 20, 18, 2, 1; 1, 2, 9, 20, 22) . The second [10, 5, 5] code, with covering rad...

متن کامل

On linear q-ary completely regular codes with rho=2 and dual antipodal

On linear q-ary completely regular codes with ρ = 2 and dual antipodal * Abstract We characterize all linear q-ary completely regular codes with covering radius ρ = 2 when the dual codes are antipodal. These completely regular codes are extensions of 1 linear completely regular codes with covering radius 1, which are all classified. For ρ = 2, we give a list of all such codes known to us. This ...

متن کامل

New MDS Self-Dual Codes from Generalized Reed-Solomon Codes

Both MDS and Euclidean self-dual codes have theoretical and practical importance and the study of MDS self-dual codes has attracted lots of attention in recent years. In particular, determining existence of q-ary MDS self-dual codes for various lengths has been investigated extensively. The problem is completely solved for the case where q is even. The current paper focuses on the case where q ...

متن کامل

Hanani triple packings and optimal q-ary codes of constant weight three

The exact sizes of optimal q-ary codes of length n, constant weightw and distance d = 2w− 1 have only been determined for q ∈ {2, 3}, and for w|(q − 1)n and n sufficiently large. We completely determine the exact size of optimal q-ary codes of constant weight three and minimum distance five for all q by establishing a connection with Hanani triple packings, and settling their existence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2010